

Roll No. 

|  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|
|  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APRIL/ MAY 2024

ELECTRICAL AND ELECTRONICS ENGINEERING

V / VII Semester

EE5003- ELECTRIC VEHICLE MECHANICS AND CONTROL

(Regulation 2019)

Time: 3hrs

Max.Marks: 100

|      |                                                                                            |
|------|--------------------------------------------------------------------------------------------|
| CO 1 | Understand the architecture and dynamics of EVs and HEVs                                   |
| CO 2 | Design an EV for standard drive cycle                                                      |
| CO 3 | Understand the electrical motors' characteristics and its application for vehicle dynamics |
| CO 4 | Workout the energy requirements and energy sources for EV application                      |
| CO 5 | Mode of operation and control architecture                                                 |

BL – Bloom's Taxonomy Levels

(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

**PART- A (10 x 2 = 20 Marks)**

(Answer all Questions)

| Q. No | Questions                                                                                                                                                                  | Marks | CO  | BL |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|
| 1     | What is the significance of "V-G" and its impact?                                                                                                                          | 2     | CO1 | L1 |
| 2     | Compare between full and mild hybrid vehicles.                                                                                                                             | 2     | CO1 | L1 |
| 3     | State the need for EMS for hybrid vehicles.                                                                                                                                | 2     | CO2 | L2 |
| 4     | Draw the Tractive efforts vs Vehicle Speed characteristics of a gasoline engine vehicle with four-gear transmission and an electric vehicle with single-gear transmission. | 2     | CO2 | L1 |
| 5     | Name any two control strategies that are well-suited for Induction motors in electric vehicles.                                                                            | 2     | CO3 | L2 |
| 6     | Draw a schematic diagram of a four-quadrant chopper circuit and indicate the direction of power flow during the reverse operation mode of an electric vehicle (EV) motor.  | 2     | CO3 | L1 |
| 7     | Define state of charge.                                                                                                                                                    | 2     | CO4 | L2 |
| 8     | Suggest a suitable energy storage system for achieving very high power density and justify.                                                                                | 2     | CO4 | L2 |
| 9     | Sketch the power train model of a series-parallel hybrid electric vehicle                                                                                                  | 2     | CO5 | L1 |
| 10    | State the functions of Power splitter.                                                                                                                                     | 2     | CO5 | L2 |

**PART- B (5 x 13 = 65 Marks)**

| Q. No  | Questions                                                                                                                | Marks | CO   | BL |
|--------|--------------------------------------------------------------------------------------------------------------------------|-------|------|----|
| 11 (a) | Analyze and explain the architecture and operation of a complex Hybrid Electric Vehicle (HEV) through a labeled diagram. | 13    | CO1  | L4 |
| OR     |                                                                                                                          |       |      |    |
| 11 (b) | How significantly does a well-to-wheel analysis, considering both manufacturing and operational                          | 13    | CO 1 | L4 |

|           |                                                                                                                                                                                                                                                                                                                                               |    |     |    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
|           | emissions, impact the argument for electric vehicles as the environmentally preferable transportation option? Illustrate with neat sketches.                                                                                                                                                                                                  |    |     |    |
| 12 (a)    | Draw and explain any two popular standard drive cycle widely adopted for city driving conditions.                                                                                                                                                                                                                                             | 13 | CO2 | L4 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                                                                               |    |     |    |
| 12 (b)    | How do factors like rolling resistance, aero dynamic drag and grade affect the tractive effort required for an EV to move? Explain with a suitable illustration.                                                                                                                                                                              | 13 | CO2 | L4 |
| 13 (a)    | Why do we prefer PMSM drive as a propeller for Electric vehicle? Draw and explain its construction, control scheme and operation in detail.                                                                                                                                                                                                   | 13 | CO3 | L4 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                                                                               |    |     |    |
| 13 (b)    | Analyze and discuss a control strategy that is well-suited for configuring a BLDC motor to function as a propeller for an electric vehicle.                                                                                                                                                                                                   | 13 | CO3 | L4 |
| 14 (a)    | Describe the different architectures used in Battery Management Systems (BMS). For one of these architectures, critically assess its strengths and weaknesses with a clear diagram to illustrate your explanation.                                                                                                                            | 13 | CO4 | L4 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                                                                               |    |     |    |
| 14 (b)    | Describe the components of a fuel cell electric vehicle (FCEV) powertrain using a labeled diagram. Also Identify a type of fuel cell commonly used in FCEVs. Assess its operational principle, highlighting the chemical reactions involved in generating electricity.                                                                        | 13 | CO4 | L4 |
| 15 (a)    | Explain the Supervisor control architecture employed in Hybrid Electric Vehicles (HEVs). Discuss its functionalities and decision-making process in optimizing powertrain operation. Illustrate your explanation with a well-labeled diagram depicting the different components and their interactions within the Supervisory control system. | 13 | CO5 | L4 |
| <b>OR</b> |                                                                                                                                                                                                                                                                                                                                               |    |     |    |
| 15 (b)    | Draw and discuss the series parallel modes operation of HEV in detail.                                                                                                                                                                                                                                                                        | 13 | CO5 | L4 |

**PART- C (1 x 15 = 15 Marks)**

(Q.No.16 is compulsory)

| Q. No | Questions                                                                                                                                                                                                                                                                                                                           | Marks | CO  | BL |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|
| 16.   | Design an electric vehicle optimized for highway driving by selecting and justifying the most efficient powertrain components. Consider factors like energy source, motor type, converter topology, and component sizing. Explain the vehicle's various operating modes and how the energy management system optimizes performance. | 15    | CO5 | L6 |

